
Undergraduate Research Project Report

Khang Ee Pang1, Lennon Ó Náraigh1, and Andrew Gloster1

1School of Mathematics and Statistics, University College Dublin, Belfield,
Dublin 4

July 24, 2018

1 UTSD equation

When a weak shock (M → 1+) reflects off a thin wedge (θ → 0+), it was observed that
the incident and reflected shock produces a Mach stem near the contact with the slope where
the incident shock, reflected shock and Mach stem form a triple point configuration. von
Neumann (1943) shows that the triple point configuration is not possible for sufficient weak
shock, hence the von Neumann triple point paradox.

In 2000, Hunter and Brio obtained a numerical solution to what now known as the Un-
steady Transonic Small-Disturbance (UTSD) equation. The simulation suggests that there
is a supersonic patch that sustains the triple point configuration and therefore resolves the
paradox. Their simulation coincides with the claim of Guderly (1962) that had been lack of
support up until this result is published. Their simulation estimates a size for the supersonic
patch, which is extremely small, to advocate for experimental observation. The supersonic
patch was soon confirmed experimentally by Skews and Ashworth (2005).

The UTSD equation is a simpler case of a larger family of the Riemann problem which
is very useful for understanding shocks. However, the theory for Riemann problems is poorly
understood due to its complex non-linearity [2]. Therefore we resolve to numerical analysis.
The study of the UTSD equation could hopefully give us more insight to understanding the
Riemann problem.

In Hunter and Brio’s original paper, the approach for solving the UTSD equation is to
discretize the x, y, and t derivatives directly. This method, however, does not support par-
allelization as each point on the grid depends heavily on its neighbours and the points from
previous time stepping. In the first part of the project, we look at an alternative method for
solving the UTSD equation to support parallel computing in order to achieve greater compu-
tation speed.

Problem setup

We look at the following Unsteady Transonic Small-Disturbance (UTSD) equation

∂2u

∂x∂t
+
∂2F

∂x2
+
∂2u

∂y2
= 0, t > 0, (x, y) ∈ Ω, (1)

1

1 UTSD EQUATION

where F is the flux

F (u) =
1

2
u2,

over a domain Ω = (−L,L)× (0, Ly) with boundary condition

uy(x, y = 0, t) = 0, u(x, y = Ly, t) = b(x), u(x = Lx, y, t) = 0, (2)

and initial condition

u(x, y, t = 0) =

{
0 x > ay,

1 x ≤ ay.

To solve this neumerically, we first discretize the UTSD equation in time with t = n∆t, and
n ∈ {0, 1, 2, ...}. As such, Equation (1) becomes

∂

∂x

(
un+1 − un

∆t

)
+
∂2F n

∂x2
+
∂2un+1

∂y2
= 0.

We could not discretize the equation further as this will distroy its parallelizability. Therefore
we seek for an analytic solution for the expression. Re-arranging the equation yields

∂un+1

∂x
+ ∆t

∂2un+1

∂y2
=
∂Φn

∂x
,

where

Φn(x, y) = un −∆t
∂F n

∂x
.

Thus, at each timestep t = n∆t, we need to solve a backwards heat equation of the form

∂ψ

∂x
+ κ

∂2ψ

∂y2
=
∂Φ

∂x
. (3)

The separate the solution into two parts

ψ(x, y) = ψ̃(x, y) + r(x, y),

where ψ̃ satisfies the equation (3) with homogeneous boundary condition and r satisfies the
inhomogeneous boundary condition (2).

Spectral method for solving the backwards heat equation

The the backward heat equation we would like to solve is

∂ψ̃

∂x
(x, y) = −κ∂

2ψ̃

∂y2
(x, y) +

∂Φ

∂x
(x, y) +Qcorr(x, y), (x, y) ∈ Ω, (4)

2 2

1 UTSD EQUATION

over a domain Ω = (−L,L)×(0, Ly) with homogeneous boundary condition and final condition

∂ψ̃

∂x
(L, y) = −b(L)f(y),

where Φ is given by

Φ(x, y) = u− κ∂F
∂x

(u). (5)

We solve this by first applying cosine transform the equation to get

dψ̂n
dx

(x) = κk2
nψ̂n(x) +

dΦ̂n

dx
(x) + Q̂corr,n(x),

and final condition

ψ̂n(L) = −b(L)

∫ Ly

0

Ψn(y)f(y)dy.

Solving the ODE via integrating factor method yields

ψ̂n(x) = ψ̂n(L)e−κk
2
n(L−x) −

∫ L

x

e−κk
2
n(x′−x)

[
∂Φ̂n

∂x′
(x′) + Q̂corr,n(x′)

]
dx′, (6)

As F (x, y) is not continuous in Ω, naively differentiating F (x, y) will produce numerical oscil-
lation. There are two instances of differentiating F , the first such instance is in equation (5)
and the second is in equation (6).

To avoid this, the x derivative in equation (5) is dealt with by applying the Engquist-Osher
(EO) scheme,

∂Fi
∂x

(u) =
fEO
i+ 1

2

− fEO
i− 1

2

∆x
, (7)

where

fEO
i− 1

2
=

1

2
max{ui−1 − c, 0}2 +

1

2
min{ui − c, 0}2,

fEO
i+ 1

2
=

1

2
max{ui − c, 0}2 +

1

2
min{ui+1 − c, 0}2.

The scheme up to this point along with discontinuity smoothing of ∂Φ
∂x

was validated using
a MATLAB code to solve the UTSD equation (see Figure 1). The fuzziness of the incident
shock is cause by the discontinuity smoothing.

The second x derivative could be avoided by applying integration by parts to evaluate
the integrand in equation (6). Using this method, the solution becomes

ψ̂n(x) =e−κk
2
n(L−x)

(
ψ̂n(L)− Φ̂n(L)

)
+ Φ̂n(x)

− κk2
n

∫ L

x

e−κk
2
n(x′−x)Φ̂n(x′)dx′ −

∫ L

x

e−κk
2
n(x′−x)Q̂corr,n(x′)dx′.

3 3

2 FAST COSINE TRANSFORM FOR DCT-IV

Figure 1: Numerical simulation of the UTSD equation for a = 0.5, ∆t = 0.0098 for Nt = 400
steps.

The integration by parts method however, causes a boundary mismatch at u(x, y = Ly, t) in
the numerical simulation and we are still trying to identify the root cause (see Figure 2).

Regardless, the fourier space solution is then transform back to the real space by

ψ̃(x, y) =
∞∑
n=0

ψ̂n(x)Ψn(y).

This process is applied repeatedly for each timestep to solve the UTSD equation.

2 Fast Cosine Transform for DCT-IV

For each timestep n, the algorithm need to perform a discrete cosine transform (DCT) on Φn

with N = Nx × Ny number of grid points. Using the traditional approach of discrete cosine
transform with matrix multiplication, it requires a storage size of N2

y and the operation count
is of order O(N2). By implementing fast cosine transform, the storage size is reduced to 2Ny

whereas the operation count is reduced to order O(N log2N) while having the same accuracy.

The DCT-IV is given by

Xk =
N−1∑
n=0

xn cos

[
π

N

(
n+

1

2

)(
k +

1

2

)]
, k = 0, 1, 2, ..., N − 1 (8)

or in polar form

Xk = Re

{N−1∑
n=0

xne
i π
N

(
n+ 1

2

)(
k+ 1

2

)}
.

4 4

2 FAST COSINE TRANSFORM FOR DCT-IV

Figure 2: UTSD equaiton with integration by parts for a = 0.5, ∆t = 0.0098 for Nt = 1 step.

We then seperate the sum into even and odd cases

Xk = Re

{N/2−1∑
n=0

[
x2ne

i π
N

(
2n+ 1

2

)(
k+ 1

2

)
+ x2n+1e

i π
N

(
2n+1+ 1

2

)(
k+ 1

2

)]}
,

reverse the index of the odd summad

Xk = Re

{N/2−1∑
n=0

[
x2ne

i π
N

(
2n+ 1

2

)(
k+ 1

2

)
+ xN−1−2ne

i π
N

(
N−1−2n+ 1

2

)(
k+ 1

2

)]}
,

and factor out eiπ
(
k+ 1

2

)
, which is equal to i(−1)k

Xk = Re

{N/2−1∑
n=0

[
x2ne

i π
N

(
2n+ 1

2

)(
k+ 1

2

)
+ i(−1)kxN−1−2ne

i π
N

(
−2n− 1

2

)(
k+ 1

2

)]}
.

Therefore,

X2k = Re

{N/2−1∑
n=0

(x2n + ixN−1−2n)e−i
π
N

(
2n+ 1

2

)(
2k+ 1

2

)}
,

XN−1−2k = Re

{N/2−1∑
n=0

(ix2n − xN−1−2n)e−i
π
N

(
2n+ 1

2

)(
2k+ 1

2

)}
,

for k = 0, 1, 2, ..., N/2− 1.

Or in other words

Xk =

{
Re{Zk/2} for even k,

− Im{Z(N−1−k)/2} for odd k,
(9)

5 5

2 FAST COSINE TRANSFORM FOR DCT-IV

Figure 3: Computation time comparison of DCT and FCT.

for k = 0, 1, 2, ..., N − 1, where

Zk = e−i
π
2N

(2k+ 1
2

)

N/2−1∑
n=0

(x2n + ixN−1−2n)e−i
π
N
ne−i

π
N/2

2nk,

which itself is a N/2 point fourier transform of zn := (x2n+ixN−1−2n)e−i
π
N
n to some multiple.

This can be solve effectively using the existing fast fourier transform algorithm.

The inverse is then simply undo the multiplication and apply the inverse fast fourier transform:

xn =

{
Re{Ẑn/2} for even n,

Im{Ẑ(N−1−n)/2} for odd n,
(10)

for n = 0, 1, 2, ..., N − 1, where

Ẑn = ei
pi
N
n 1

N

N/2−1∑
k=0

Zke
i π
2N

(
2k+ 1

2

)
ei

π
N/2

2nk.

This scheme has been validated using a MATLAB code and implemented to the UTSD solver.
It should be noted that the Fast Fourier Transform (FFT) and Inverse FFT is done by
MATLAB’s build in function. A comparison is done with transforming one matrix of size
N = Nx × Ny. From Figure 3, we can see that the FCT outperform DCT for sufficiently
large N and the efficiency will scale directly with the number of timesteps Nt while solving
the UTSD equation.

6 6

3 HYPERDIFFUSION EQUATION

3 Hyperdiffusion equation

Motivated to solve the Cahn-Hilliard equation in large quantities, we look at producing an
efficient, parallelizable algorithm to be used in NVIDIA GPU [6]. In particular, we focus on
solving a simpler case of the Cahn-Hilliard equation, namely the Hyperdiffusion equation [7].
Solving the hyperdiffusion equation require us to solve a system of equations Ax = b for each
grid point for every timestep, where A is a cyclic pentadiagonal matrix. We utilize the fact
that A stays the same for every computation to improve the efficiency of the algorithm.

The 1D hyperdiffusion equaiton is given by

∂C

∂t
= −γD∂

4C

∂x4
, t > 0, x ∈ (0, L), (11)

with periodic boundary condition C(x+L) = C(x) and initial condition C(x, t = 0) = f(x).

By discretizing the hyperdiffusion equation using the Crank-Nicholson scheme, we get

Cn+1
i − Ci

∆t
= −1

2
∆x4[Cn+1

i+2 − 4Cn+1
i+1 + 6Cn+1

i − 4Cn+1
i−1 + Cn+1

i−2]

− 1

2
∆x4[Cn

i+2 − 4Cn
i+1 + 6Cn

i − 4Cn
i−1 + Cn

i−2],

re-aranging yields

1

2
rCn+1

i+2 − 2rCn+1
i+1 + (1 + 3r)Cn+1

i − 2rCn+1
i−1 +

1

2
rCn+1

i−2

= −1

2
rCn

i+2 + 2rCn
i+1 + (1− 3r)Cn

i + 2rCn
i−1 −

1

2
rCn

i−2. (12)

This can be expressed as a system of equation

c d e 0 0 b a
b c d e 0 0 b
a b c d e 0 0
0 a b c d e 0

. .

0 a b c d e 0
0 0 a b c d e
e 0 0 a b c d
d e 0 0 a b c





Cn+1
1

Cn+1
2

Cn+1
3

Cn+1
4
...

Cn+1
N−3

Cn+1
N−2

Cn+1
N−1

Cn+1
N


=



dn1
dn2
dn3
dn4
...

dnN−3

dnN−2

dnN−1

dnN


,

where dni is given by

dni = −1

2
rCn

i+2 + 2rCn
i+1 + (1− 3r)Cn

i + 2rCn
i−1 −

1

2
rCn

i−2.

7 7

3 HYPERDIFFUSION EQUATION

We solve this by first dividing the matrix into sections:

c d e 0 0 b a
b c d e 0 0 b
a b c d e 0 0
0 a b c d e 0

. .

0 a b c d e 0
0 0 a b c d e
e 0 0 a b c d
d e 0 0 a b c





Cn+1
1

Cn+1
2

Cn+1
3

Cn+1
4
...

Cn+1
N−3

Cn+1
N−2

Cn+1
N−1

Cn+1
N


=



dn1
dn2
dn3
dn4
...

dnN−3

dnN−2

dnN−1

dnN


,

and lable each section as such (
E f
gT W

)(
X̂

X̃

)
=

(
d̂

d̃

)
.

Thus the system becomes two coupled simultaneous equations

EX̂ + fX̃ = d̂

gT X̂ +WX̃ = d̃

solving this simultaneous equation yields

X̃ =
(
W − gTE−1f

)−1(
d̃− gTE−1d̂

)
(13)

X̂ = E−1
(
d̂− fX̃

)
. (14)

The LU factorization of E,
(
W − gTE−1f

)−1
, and gTE−1 can be computed and stored

beforehand. A C code was produced for the implementation described above for validation
and it was used as a benchmark for the more sophisticated cuPentBatch which interleaves the
input into a more accessible format. cuPentBatch is able to outperform the current state-of-
the-art algorithm - gpsvInterleavedBatch from NVIDIA’s CUDA library. A C code to solve the
two-dimensional hyperdiffusion equation was also produced to set up the pathway to tackle
the Cahn-Hilliard equation.

8 8

3 HYPERDIFFUSION EQUATION

Figure 4: A plot of the one-dimensional diffusion equation with initial condition f(x) =
cos(2nπx) where n = 2.

Figure 5: L2 norm plot of the algorithm as a function of resolution. As we can see from the
plot, the slop of −2 as the Crank-Nicholson scheme is O(N2) accurate.

9 9

REFERENCES

4 Conclusion

In the first part of the project, we improve the algorithm to solve the UTSD equation to
support parallel computing by finding the analytic solution for the backward heat equation.
This method makes use of Fourier transform which we then implement fast cosine transform
to optimize the computation speed. Further effort will be put on integrating a better method
to resolve the discontinuity while solving the backward heat equation.

In the second part of the project, we utilize a property of the hyperdiffusion equation
to produce an efficient algorithm for the hyperdiffusion equation. We are able to achieve a
significant speedup in computational time compared to other libraries. Moreover, this idea is
applicable to solve higher order PDE that retain the LHS matrix during numerical computation.
Our work is featured in the journal - Computer Physics Communications titled ’cuPentBatch - A
Batch Pentadiagonal Solver for NVIDIA GPUs’. Future work would be applying this algorithm
to solve the Cahn-Hilliard equation in one-dimension and ultimately, in higher dimensions.

Overall, my summer student internship project has been fruitful and it certainly gives me
a taste of what the front line of mathematical research is like with the successes and failures.
On top of that, I have gained a lot from this internship including picking up two programming
language (MATLAB and C), as well as developing good programming and scientific routine
for debugging and validating results. I am positive that my time and experience during this
internship will prove valuable and aid me along my path to pursue a career in academia.

Acknowledgement

Khang Ee Pang would like to thank the UCD School of Mathematics and Statistics for the
opportunity and funding for the Summer Research Placement 2018 program. In addition, he
would like to thank Dr. Lennon Ó Náraigh and Andrew Gloster for the guidance and supervi-
sion.

References

[1] J. von Neumann. Collected works, Vol 6. Pergamon Press, New York (1963).

[2] J. K. Hunter and M. Brio. Weak shock reflection. J. Fluid Mech., 410:235-261, 2000.

[3] K. G. Guderly. The Theory of Transonic Flow, 144-149. Pergamon Press, New York (1962).

[4] B. W. Skews and J. T. Ashworth. The physical nature of weak shock wave reflection. J.
Fluid Mech., 542:105-144, 2005.

[5] L. Ó Náraigh. New idea for the UTSD equation. 2018.

[6] L. Ó Náraigh and Andrew Gloster. Potential applications for a pentadiagonal solver. 2018.

[7] L. Ó Náraigh and Andrew Gloster. cuPentBatch - A batch pentadiagonal solver for NVIDIA
GPUs. 2018.

10 10

